The existence of simple S3(3, 4, v)
نویسندگان
چکیده
منابع مشابه
The existence of (v, 4, λ) disjoint difference families
A (v, k, λ) difference family ((v, k, λ)-DF in short) over an abelian group G of order v is a collection F = {Bi | i ∈ I} of k-subsets of G, called base blocks, such that each nonzero element of G can be represented in precisely λ ways as a difference of two elements lying in some base blocks in F . A disjoint (v, k, λ)-DF is a difference family with disjoint blocks. In this paper, it is proved...
متن کاملSuper-simple (v, 5, 4) designs
Super-simple designs are useful in constructing codes and designs such as superimposed codes and perfect hash families. Recently, Gronau et al determined the existence of super-simple (v, 5, 2)-BIBDs with possible exceptions of v ∈ {75, 95, 115, 135, 195, 215, 231, 285, 365, 385, 515}. In this article, we investigate the existence of a super-simple (v, 5, 4)-BIBD and show that such a design exi...
متن کاملExistence of doubly near resolvable (v, 4, 3) BIBDs
The existence of doubly near resolvable (v, 2, 1)-BIBDs was established by Mullin and Wallis in 1975. For doubly near resolvable (v, 3, 2)-BIBDs, the existence problem was investigated by Lamken in 1994, and completed by Abel, Lamken and Wang in 2007. In this paper, we look at doubly near resolvable (v, 4, 3)-BIBDs; we establish that these exist whenever v ≡ 1 (mod 4) except for v = 9 and possi...
متن کاملExistence of Generalized Steiner Systems GS(2, 4, v, 2)
Generalized Steiner systems GS(2, 4, v, 2) were first discussed by Etzion and used to construct optimal constant weight codes over an alphabet of size three with minimum Hamming distance five, in which each codeword has length v and weight four. Etzion conjectured its existence for any integer v ≥ 7 and v ≡ 1 (mod 3). The conjecture has been verified for prime powers v > 7 and v ≡ 7 (mod 12) by...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1989
ISSN: 0012-365X
DOI: 10.1016/0012-365x(89)90364-6